Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 18834, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139850

RESUMO

Long-term supply of synthetic nitrogen (N) has the potential to affect the soil N processes. This study aimed to (i) establish N response curves to find the best balance between inputs and outputs of N over four ratoons; (ii) use 15N-labeled fertilizer to estimate the N recovery efficiency of fertilizer applied in the current season as affected by the N management in the previous three years. Nitrogen rates (control, 60, 120, and 180 kg ha-1 N) were applied annually in the same plots after the 1st, 2nd, 3rd, and 4th sugarcane cycles. Sugarcane yield, N uptake, and N balance were evaluated. In the final season, 100 kg ha-1 of 15N was also applied in the microplots to evaluate the effect of previous N fertilization on N derived from fertilizer (NDF) and N derived from soil (NDS). Sugarcane yields increased linearly with the N rates over the four sugarcane-cycles. The best balance between the input of N through fertilizer and N removal by stalks was 90 kg ha-1 N in both the 1st and 2nd ratoons, and 71 kg ha-1 N in both the 3rd and 4th ratoons. Long-term application of N reduced NDF from 41 to 30 kg ha-1 and increased NDS from 160 to 180 kg ha-1 N. A key finding is that long-term N fertilization has the potential to affect soil N processes by increasing the contribution of soil N and reducing the contribution of N from fertilizer.

2.
Sci Total Environ ; 650(Pt 1): 1476-1486, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30308834

RESUMO

Vinasse is a major byproduct of the sugarcane biofuel industry, recycled in the fields. However, there is evidence that the application of vinasse with mineral nitrogen (N) fertilizers in sugarcane enhances the emission of greenhouse gases (GHGs). Therefore, strategies are needed to decrease the environmental impacts caused by both inputs. We carried out three sugarcane field experiments by applying N fertilizer (ammonium nitrate) with types of vinasses (concentrated-CV and standard-V) in different combinations (vinasses with N fertilizer and vinasses one month before or after mineral N fertilization). The gases nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) were measured in one experiment fertilized in the beginning (fall/winter = dry season) and two experiments fertilized in the end (spring = rainy season) of the harvest season. Sugarcane fields were sinks rather than sources of CH4, while total carbon emitted as CO2 was similar between seasons and treatments. The effect of mineral fertilization and vinasses (CV and V) on N2O emissions was highly dependent on soil moisture (rain events). The N2O-N fertilizer emission factor (EF) varied from 0.07% to 0.51%, whereas the average EF of V and CV were 0.66% and 0.34%, respectively. On average across the three experiments, the combination of vinasse (CV or V) with N fertilizer increased the N2O emissions 2.9-fold compared to that of N fertilizer alone. For CV + N, the EF was 0.94% of the applied N and 0.23% of the ammonium nitrate-N, and for V + N (EF = 0.47%), increased emissions were observed in two out of three experiments. The strategy of anticipating or postponing vinasse application by one month with respect to mineral N reduced the N2O emissions by 51% for CV, but not for V. Therefore, to avoid boosting N2O emissions, we suggest applying vinasses (CV and V) before or after mineral N fertilization.

3.
Water Sci Technol ; 76(3-4): 728-738, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28759455

RESUMO

Vinasse has been used as fertilizer by sugarcane growers, due to its potential to completely replace mineral fertilizers. However, if the application is not adequate, this practice may cause environmental contamination. This study used a respirometry test to evaluate the organic matter (OM) decomposition present in natural vinasse and concentrated vinasse (CV), with or without urea addition. The experiment involved two soil types and two types of vinasse at different application rates. The vinasse chemical characterization showed high levels of pseudo-total potassium (K) in both vinasses, which are not considered in the application rates. Decomposition rates above 90% and between 70 and 80% were obtained for sandy and clayey soils, respectively, over a brief 41-day period, indicating rapid OM decomposition. Positive priming effect was observed for CV and CV + urea treatments in sandy soil. An important implication of these findings revealed that K not available in vinasse was released in the soil solution by the OM mineralization, indicating the possibility of overestimation in the vinasse application rates. Therefore, K pseudo-total values should be considered in the calculation of the vinasse application rates. However, studies involving K mobility into soil are needed to validate this hypothesis.


Assuntos
Silicatos de Alumínio , Saccharum , Solo/química , Argila , Fertilizantes , Poluentes do Solo/química
4.
Environ Monit Assess ; 188(3): 163, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26879984

RESUMO

Many researchers have evaluated the effects of successive applications of sewage sludge (SS) on soil plant-systems, but most have not taken into account the residual effect of organic matter remaining from prior applications. Furthermore, few studies have been carried out to compare the effects of the agricultural use of SS and sewage sludge compost (SSC). Therefore, we evaluated the residual effect of SS and SSC on the heavy metal concentrations in soil and in sugarcane (Saccharum spp.) leaves and juice. The field experiment was established after the second harvesting of unburned sugarcane, when the organic materials were applied. The SS and SSC rates were (t ha(-1), dry base): 0, 12.5, 25, and 50; and 0, 21, 42, and 84, respectively. All element concentrations in the soil were below the standards established by São Paulo State environmental legislation. SS promoted small increases in Zn concentrations in soil and Cu concentrations in leaves. However, all heavy metals concentrations in the leaves were lower than the limits established for toxic elements and were in accordance with the limits established for micronutrients. There were reductions in the concentrations of Ni and Cu in soil and the concentration of Pb in juice, with increasing rates of SSC. The heavy metal concentrations were very low in the juice. Under humid tropical conditions and with short-term use, SS and SSC containing low heavy metal concentrations did not have negative effects on plants and soil.


Assuntos
Metais Pesados/análise , Saccharum/química , Solo/química , Agricultura , Monitoramento Ambiental , Micronutrientes/análise , Folhas de Planta/química , Esgotos/análise , Poluentes do Solo/análise , Eliminação de Resíduos Líquidos , Zinco/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA